Biased Gene Fractionation and Dominant Gene Expression among the Subgenomes of Brassica rapa
نویسندگان
چکیده
Polyploidization, both ancient and recent, is frequent among plants. A "two-step theory" was proposed to explain the meso-triplication of the Brassica "A" genome: Brassica rapa. By accurately partitioning of this genome, we observed that genes in the less fractioned subgenome (LF) were dominantly expressed over the genes in more fractioned subgenomes (MFs: MF1 and MF2), while the genes in MF1 were slightly dominantly expressed over the genes in MF2. The results indicated that the dominantly expressed genes tended to be resistant against gene fractionation. By re-sequencing two B. rapa accessions: a vegetable turnip (VT117) and a Rapid Cycling line (L144), we found that genes in LF had less non-synonymous or frameshift mutations than genes in MFs; however mutation rates were not significantly different between MF1 and MF2. The differences in gene expression patterns and on-going gene death among the three subgenomes suggest that "two-step" genome triplication and differential subgenome methylation played important roles in the genome evolution of B. rapa.
منابع مشابه
Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy.
The genome sequence of the paleohexaploid Brassica rapa shows that fractionation is biased among the three subgenomes and that the least fractionated subgenome has approximately twice as many orthologs as its close (and relatively unduplicated) relative Arabidopsis than had either of the other two subgenomes. One evolutionary scenario is that the two subgenomes with heavy gene losses (I and II)...
متن کاملThe Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks
The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, ...
متن کاملTwo evolutionarily distinct classes of paleopolyploidy.
Whole genome duplications (WGDs) occurred in the distant evolutionary history of many lineages and are particularly frequent in the flowering plant lineages. Following paleopolyploidization in plants, most duplicated genes are deleted by intrachromosomal recombination, a process referred to as fractionation. In the examples studied so far, genes are disproportionately lost from one of the paren...
متن کاملImpacts of Whole-Genome Triplication on MIRNA Evolution in Brassica rapa
MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play essential roles in eukaryotes. Although the influence of whole-genome triplication (WGT) on protein-coding genes has been well documented in Brassica rapa, little is known about its impacts on MIRNAs. In this study, through generating a comprehensive annotation of 680 MIRNAs for B. rapa, we analyzed the evolutionary c...
متن کاملQuantitative Trait Loci Mapping in Brassica rapa Revealed the Structural and Functional Conservation of Genetic Loci Governing Morphological and Yield Component Traits in the A, B, and C Subgenomes of Brassica Species
Brassica rapa is an important crop species that produces vegetables, oilseed, and fodder. Although many studies reported quantitative trait loci (QTL) mapping, the genes governing most of its economically important traits are still unknown. In this study, we report QTL mapping for morphological and yield component traits in B. rapa and comparative map alignment between B. rapa, B. napus, B. jun...
متن کامل